Genome-Wide Association Studies

Mikhail Dozmorov

2021-05-03

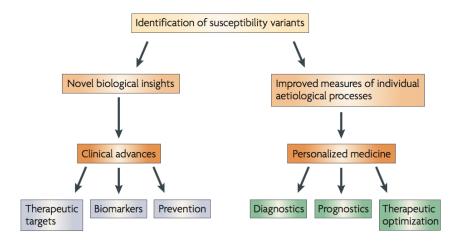
Mikhail Dozmorov

Genome-Wide Association Studies

2021-05-03 1 / 17

Definitions

- ASSOCIATION STUDY A genetic variant is genotyped in a population for which phenotypic information is available (such as disease occurrence, or a range of different trait values). If a correlation is observed between genotype and phenotype, there is said to be an association between the variant and the disease or trait.
- QUANTITATIVE TRAIT A biological trait that shows continuous variation (such as height) rather than falling into distinct categories (such as diabetic or healthy). The genetic basis of these traits generally involves the effects of multiple genes and gene-environment interactions. Examples of quantitative traits that contribute to disease are body mass index, blood pressure and blood lipid levels
- CANDIDATE GENE A gene for which there is evidence of its possible role in the trait or disease that is under study.


The Role of GWAS SNP Arrays in Human Genetic Discoveries

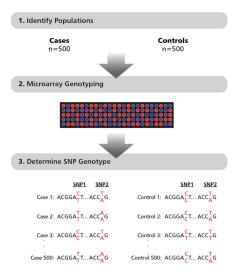
Analysis	Purpose	Discoveries	
GWAS	detecting trait-SNP associations	\sim 10,000 robust associations with diseases and disorders, quantitative traits, and genomic traits	
Genome-wide CNV analysis	detecting trait-CNV associations	hundreds of associations with diseases and disorders	
Genome-wide assessment of LD	quantifying genome architecture	large variation in LD in the genome	
Estimation of SNP heritability ^a	genetic architecture	large proportion of genetic variation captured by common SNPs	
Estimation of genetic correlation ^a	detecting and quantifying pleiotropy	pleiotropy is ubiquitous	
Polygenic risk scores ^a	detecting pleiotropy; validating GWAS discoveries	out-of-sample prediction works as expected; detection of novel trait associations	
Mendelian randomization ^a	testing causal relationships	replication of known causal relationships; empirical evidence of observational associations that are not causal	
Population differences in allele frequencies	reconstructing human population history; detecting selection	genetic structure can mimic geographical structure; evidence of natural selection	
Trait GWAS with -omics GWAS ^a	fine-mapping; detecting target genes; function	two-thirds of GWAS-associated loci implicate a gene that is not the nearest gene to the most associated SNP	

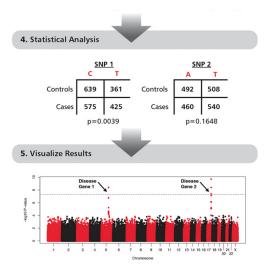
^aThese analyses can be performed with GWAS summary statistics.

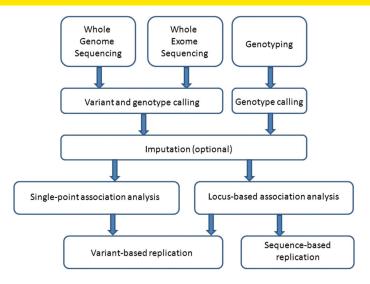
- Mendelian diseases caused by changes in a single genes
- Most heritable diseases in humans are *multigenic* or *complex* rather than Mendelian
- In a complex genetic model, many genes and possible environmental factors collectively increase the risk of disease in a population, but each gene individually contributes minor to modest effects.

Genome-Wide Association Studies (GWAS)

McCarthy, Mark I., Gonçalo R. Abecasis, Lon R. Cardon, David B. Goldstein, Julian Little, John P. A. Ioannidis, and Joel N. Hirschhorn. "Genome-Wide Association Studies for Complex Traits: Consensus, Uncertainty and Challenges." Nature Reviews. Genetics 9, no. 5 (May 2008): 356–69. https://doi.org/10.1038/nrg2344.

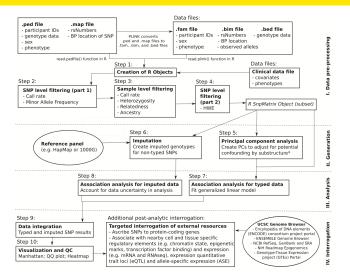

Mikhail Dozmorov


Genome-Wide Association Studies


Genetic definitions

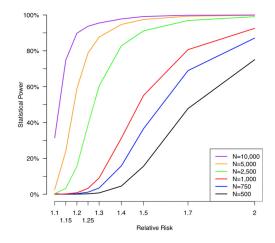
Term	Definition	
Linkage mapping	A family-based method to identify genomic regions inherited from parent to affected offspring through multiple generations; generally used to map the location of a disease-causing gene in a family	
Positional cloning	A research strategy that combines linkage mapping, gene identification, and sequencing to identify mutations in a likely disease-causing gene	
Single nucleotide polymorphism (SNP)	Single base sequence changes that are common throughout the genome and are useful markers for disease gene mapping in large populations	
Genome-wide association study (GWAS)	A research strategy that involves searching the entire genome to identify polymorphisms, primarily SNPs, that are associated with disease risk	
Qualitative traits	Phenotypes described as discrete dichotomous values (e.g., either diseased or healthy); generally tested using chi-square contingency tables	
Quantitative traits	Phenotypes that vary in degree and may be described by numerical measurements (e.g., Cobb angle for scoliosis); may be tested using analysis of variance	
Replication	Independent validation of significant GWAS associations; provides additional evidence for significant associations to ensure that the association is not an artifact of the design, method, or populations used in the original study	

Paria N, Copley LA, Herring JA, Kim HK, Richards BS, Sucato DJ, Rios JJ, Wise CA. The impact of large-scale genomic methods in orthopaedic disorders: insights from genome-wide association studies. J Bone Joint Surg Am. 2014 Mar 5;96(5):e38. doi: 10.2106/JBJS.M.00398



Panoutsopoulou K, Tachmazidou I, Zeggini E. In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet. 2013 Oct 15;22(R1):R16-21. doi: 10.1093/hmg/ddt376

Mikhail Dozmorov


Reed, Eric, Sara Nunez, David Kulp, Jing Qian, Muredach P. Reilly, and Andrea S. Foulkes. "A Guide to Genome-Wide Association Analysis and Post-Analytic Interrogation." Statistics in Medicine 34, no. 28 (December 10, 2015): 3769–92.

Mikhail Dozmorov

Genome-Wide Association Studies

2021-05-03 10 / 17

GWAS power

 $Online \ tools, \ such \ as \ PAWE \ (Power \ Analysis \ With \ Errors, \ http://www.jurgott.org/linkage/pawe3d.zip) \ and \ the \ Genetic \ Power \ Calculator \ (http://zzz.bwh.harvard.edu/gpc/), \ are \ available.$

 $http://journals.lww.com/jbjsjournal/Citation/2014/03050/The_Impact_of_Large_Scale_Genomic_Methods_in.16.aspx$

	Dozm	

Genome-Wide Association Studies

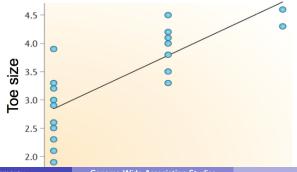
2021-05-03 11/17

GWAS significance level

• The first is the need to adjust for multiple testing and the probability of chance associations. For example, for a significance level (α) of 0.05, a typical GWAS involving 1 million SNPs will generate 1 million x 0.05 = 50,000 SNPs with p < 0.05 as a result of chance.

Genome-wide significance levels for the GWAS era were estimated to be at $P = 5 \times 10^{-8}$ based on the number of independent common-frequency variants across the genome calculated based on the European population data from the HapMap Project

GWAScatalog - the Catalog of Published Genome-Wide Association Studies



https://www.ebi.ac.uk/gwas/

Statistical analysis: linear regression

Two main parameters: p-value and effect size

$$y = \beta_0 + \beta_1 x$$

Trait = $\beta_0 + \beta_1 SNP_1$
Toesize = $\beta_0 + \beta_1 rs9876543$

2021-05-03 14 / 17

Mikhail Dozmorov

Statistical analysis: linear regression

Two main parameters: p-value and effect size

 $y = \beta_0 + \beta_1 x$ $Trait = \beta_0 + \beta_1 SNP_1$ $Toesize = \beta_0 + \beta_1 rs9876543$

 $Toesize = \beta_0 + \beta_1 rs9876543 + \beta_2 sex + \beta_3 age + \beta_4 age^2 + \beta_5 BMI$

Assumptions

Trait is normally distributed for each genotype, with a common variance

• Subjects independent (e.g. unrelated)

Mikhail Dozmorov

Odds ratio

• Surrogate measure of effect of allele on risk of developing disease

Allele	А	С	Total
Case	860	1140	2000
Control	1000	1000	2000
Total	1860	2140	4000

Odds of C allele given case status = CaseC/CaseAOdds of C allele given control status = ControlC/ControlA $OddsRatio = \frac{CaseC/CaseA}{ControlC/ControlA} = \frac{1140/860}{1000/1000} = 1.33$

- $\bullet\,$ Genotype and test > 300K 5M SNPs
- Correct for the multiple tests

-

$$\frac{0.05 \ P - value}{1 \ million \ common \ SNPs} = 5 \times 10^{-8}$$

• Need large effect or large sample size