Design matrices

Linear regression overview

We measure tumor grade and expression of gene 1. We are interested in:

1) How useful was expression of gene 1 for predicting tumor grade? R^{2}
2) Was that relationship due to chance? p-value

T-test

The goal of t-test is to compare meansand see if they are significantly different from each other.

T-test in terms of linear regression

- Calculate the overall mean
- Calculate the sum of squared residuals around the mean $S S_{\text {mean }}$

- Fit a line to the data, separately for each group (mean $=$ the least squares fit to the group of data)
- For each group, we can calculate $S S_{f i t}$

- Combine two lines into a single equation. This will make the steps for computing F-statistics exactly the same as for the regression

```
# Combines both lines for the first group
y_11 = 1 * mu_1 + 0 * mu_2 + residual_11
y_12 = 1 * mu_1 + 0 * mu_2 + residual_12
y_13 = 1 * mu_1 + 0 * mu_2 + residual_13
y_14 = 1 * mu_1 + 0 * mu_2 + residual_14
# Combines both lines for the second group
y_21 = 0 * mu_1 + 1 * mu_2 + residual_21
y_22 = 0 * mu_1 + 1 * mu_2 + residual_22
y_23 = 0 * mu_1 + 1 * mu_2 + residual_23
y_24 = 0 * mu_1 + 1 * mu_2 + residual_24
```

- 1's and 0's serve as "switches" for each group. This is our design matrix X, one column per group.

10
10
10
10
01
01
01
01

- Get mu's and y's in a vector form, and

$$
Y=X * M U+\epsilon
$$

- Now, can calculate $F=\frac{\left(S S_{\text {mean }}-S S_{f i t}\right) /\left(p_{f i t}-p_{\text {mean }}\right)}{S S_{f i t} /\left(n-p_{f i t}\right)}$ and the p -value
- $p_{\text {mean }}$ - the number of parameters in the equation for the overall mean for gene expression ($=1$)
- $p_{f i t}$ - the number of parameters in the line we fit for the data in individual groups ($=2$)
- Same technique extends for multiple groups - ANOVA

A more common design matrix

10
10
10
10
1
1
1
1

- In this setup, all measurements contribute to the mean for the first group
- But only the measurements from the second group contribute to the difference between the first and the second group
- So the second column serves as a switch for the offset from the mean for the second group

Status: 1 - normal, 2 - tumor

```
# Combines both lines for the first group
y_11 = 1 * mu_1 + 0 * difference_{mu_2 - mu_1} + residual_11
y_12 = 1 * mu_1 + 0 * difference_{mu_2 - mu_1} + residual_12
y_13 = 1 * mu_1 + 0 * difference_{mu_2 - mu_1} + residual_13
y_14 = 1 * mu_1 + 0 * difference_{mu_2 - mu_1} + residual_14
# Combines both lines for the second group
y_21 = 1 * mu_1 + 1 * difference_{mu_2 - mu_1} + residual_21
y_22 = 1 * mu_1 + 1 * difference_{mu_2 - mu_1} + residual_22
```

```
y_23 = 1 * mu_1 + 1 * difference_{mu_2 - mu_1} + residual_23
y_24 = 1 * mu_1 + 1 * difference_{mu_2 - mu_1} + residual_24
```

- Same way to calculate $S S_{\text {mean }}$ and $S S_{f i t}$
- Same number of equations
- Same number of parameters

Power of design matrices

- Say, in addition to group 1 and group 2, you have age variable.

- We need to expand our model like $y=$ group $1 _i n t e r c e p t+g r o u p 2 _o f f$ set + slope - full model
- So, in our design matrix, first columns of 1's mean that both lines intercept the Y-axis, and specify the intercept for group 1
- The second column indicates the offset of group 2 measures
- The third column is the Age variable for each group

1	0	1
1	0	2
1	0	3
1	0	4
1	1	1
1	1	2
1	1	3
1	1	4

- Compare with the simple model $y=$ overall_mean
- Calculate how much better is the full model: $F=\frac{\left(S S_{\text {simple }}-S S_{\text {full }}\right) /\left(p_{\text {full }}-p_{\text {simple }}\right)}{S S_{f u l l} /\left(n-p_{\text {simple }}\right)}$

Batch effect

- Suppose you have measurements from two labs

- First, add a term for the first lab normal group mean

- Second, add a term for the offset in measurements by the second lab

- Third, add a term for the offset of the tumor measurements

- The final model $y=l a b 1 _$normal_mean $+l a b 2 _o f f s e t+$ difference $_{\text {tumor }-n o r m a l}$, and the design matrix
$\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}$

```
1 0 1
1 0}
1 0}
1 0}
1 0
1 0
1 0
1 0
1
1 1
1
1 1
```

- Does the lab effect matter? Compare the final model with a simpler one $y=l a b 1 _$normal $_$mean + difference ${ }_{\text {tumor-normal }}$

Learn more

- Law, Charity W., Kathleen Zeglinski, Xueyi Dong, Monther Alhamdoosh, Gordon K. Smyth, and Matthew E. Ritchie. "A Guide to Creating Design Matrices for Gene Expression Experiments." F1000Research (December 10, 2020) - Design matrices for various experimental designs. Means model or mean-reference model.
- Soneson, C, F Marini, F Geier, MI Love, and MB Stadler. "ExploreModelMatrix: Interactive Exploration for Improved Understanding of Design Matrices and Linear Models in R" F1000Research, (June 4, 2020).

