RNA-seq experimental considerations

Mikhail Dozmorov

2021-03-03

Mikhail Dozmorov

RNA-seq experimental considerations

2021-03-03 1 / 16

The organization of an experiment, to ensure that *the right type of data*, and *enough of it*, is available to answer the questions of interest as clearly and efficiently as possible.

Why Design an Experiment?

- The goal of an experiment dictates everything from how the samples are collected to how the data are generated
- The design of the analytical protocol should be reflected in the design
 - Do we have enough replicates?
 - Do we have sufficient controls?
 - Do we collect samples and data to avoid confounding and batch effects?

Types of Experiments

Class Comparison

- Can I find genes that distinguish between two classes, such as tumor and normal?

Class Discovery

- Given what I think is a uniform group of samples, can I find subsets that are biologically meaningful?

Classification

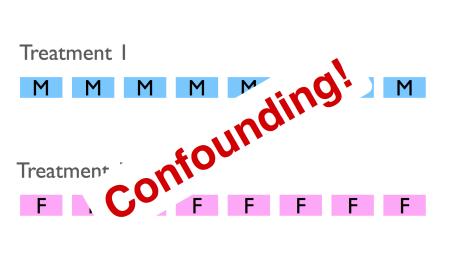
- Given a set of samples in different classes, can I assign a new, unknown sample to one of the classes?

Large-scale Functional Studies

- Can I discover a causative mechanism associated with the distinction between classes? These are often not perfectly distinct.

What affects the outcome of an experiment?

Outcome = <u>Treatment effects</u> +	Biological effects +	Technical effects	+ Error
Environment Compound Inhibitor siRNA Dose Time	Sex Age Weight Litter Genotype Species Cell line	Technician Batch Plate Cage Array Day Order Source	Experimental Treatment Sampling Measurement


What is bad experimental design - examples

Treatment I M M M M M M M

Treatment II

What is bad experimental design - examples

What is bad experimental design - examples

Analysis batch I / Study center I / Processing protocol I ...

Tr Tr Tr Tr Tr Tr Tr

Analysis batch II / Study center II / Processing protocol II ..

Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl

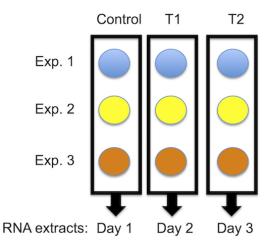
In RNA-seq, we have multiple levels of randomness:

- Biological variability in samples
- Stochasticity of RNA content
- Randomness of fragments being sequenced
- Technical variability

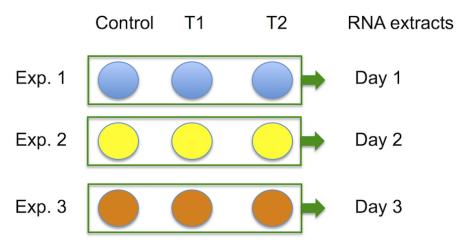
Auer, P.,RW Doerge. "Statistical Design and Analysis of RNA Sequencing Data." Genetics, 2010 http://www.genetics.org/content/185/2/405.long

Principles of experimental design

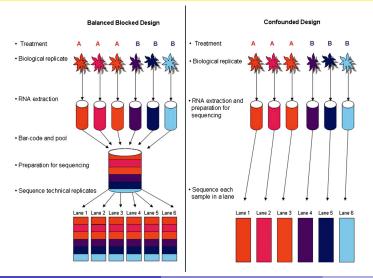
- **Replication**. It allows the experimenter to obtain an estimate of the experimental error
- **Randomization**. It requires the experimenter to use a random choice of every factor that is not of interest but might influence the outcome of the experiment. Such factors are called nuisance factors
- **Blocking**. Creating homogeneous blocks of data in which a nuisance factor is kept constant while the factor of interest is allowed to vary. Used to increase the accuracy with which the influence of the various factors is assessed in a given experiment
- Block what you can, randomize what you cannot


Replicates

- Technical replicates and Biological replicates
- Rule of thumb: for two-fold change use 3 replicates
- Smaller change 5 replicates


Blocking

• Treatment and RNA extraction days are confounded



Blocking

Block replicated experiments

Experimental design: Multiplexing balances technical variability

Mikhail Dozmorov

Sequencing length/depth

- Longer reads improve mappability and transcript quantification
- More transcripts will be detected and their quantification will be more precise as the sample is sequenced to a deeper level
- Up to 100 million reads is needed to precisely quantify low expressed transcripts
- In reality, 20-30 million reads is OK for human genome

Power calculations

- Scotty Power Analysis for RNA Seq Experiments
- powerSampleSizeCalculator R scripts for power analysis and sample size estimation for RNA-Seq differential expression
- RnaSeqSampleSize R package and a Shiny app for RNA sequencing data sample size estimation
- RNASeqPower R package for RNA-seq sample size analysis

http://scotty.genetics.utah.edu/, Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. "Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression". *Bioinformatics* 2013 https://www.ncbi.nlm.nih.gov/pubmed/23314327

http://www2.hawaii.edu/~lgarmire/RNASeqPowerCalculator.htm, Travers C. et.al. "Power analysis and sample size estimation for RNA-Seq differential expression" *RNA* 2014 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201821/

https://cqs.mc.vanderbilt.edu/shiny/RNAseqPS/, Guo et.al. "RNAseqPS: A Web Tool for Estimating Sample Size and Power for RNAseq Experiment" *Cancer Informatics* 2014 http://insights.sagepub.com/rnaseqps-a-web-tool-for-estimating-sample-size-and-power-for-rnaseq-ex-article-a4433

https://bioconductor.org/packages/release/bioc/html/RNASeqPower.html, Svensson, V. et.al. "Power Analysis of Single-Cell RNA-Sequencing Experiments." *Nature Methods* 2017 http://www.nature.com/nmeth/journal/v14/n4/pdf/nmeth.4220.pdf